Problem 1 (5 pts) Take all the first-order partial derivatives of the following functions:

\[f(x, y) = x^2 e^{xy} \]

\[p(x, y) = xy + \ln y \]

Problem 2 (5 pts) Take all the first-order partial derivatives of the following functions:

\[h(u, v) = \ln(u^2 v + 5) \]

\[g(x, y, z) = xy^2 \]

Problem 3 (10 pts) Take all the first-order and second-order partial derivatives of the following function:

\[U(x, t) = 10x^3 t^5 \]

Problem 4 (10 pts) The hardness \(H \) of a metal depends on the maximum temperature \(T \) in degrees Celsius during the production process and the purity \(P \). Suppose your metal production process has \(T = 8000 \) and \(P = 0.99 \). Also, suppose

\[\frac{\partial H}{\partial T}(8000, 0.99) = 0.096 \]

and

\[\frac{\partial H}{\partial P}(8000, 0.99) = 200. \]

Now suppose the temperature were to increase by 20 degrees Celsius, and the purity decreased by 0.01. What would be the approximate overall effect on the hardness?

Problem 5 (7 pts) Sketch the level set of \(f(x, y) = 2y + 4x \) at height 6.
Problem 6 (10 pts) Find all critical points of the function
\[f(x, y) = 3x^2 - 3xy + 6y + 23 \]
and determine which are relative maxima, relative minima, and saddles.

Problem 7 (10 pts) True or false:

T F The partial derivative is so called because it is half a rate of change.

T F As you follow along a level curve for a function \(f(x, y) \), the value of \(f \) will not change.

T F If at a point \((2, 4) \), \(f_x(2, 4) = 0 \), \(f_y(2, 4) = 0 \), and \(f_{xx}(2, 4) > 0 \), then we can conclude that \((2, 4) \) is a relative minimum.

T F For a constrained optimization problem, at the maximum along a constraint, the level curve will be tangent to the constraint.

T F If \(p \) is the price of Ivory Soap, and \(q \) the price of Dove soap, and the demand for Ivory soap \(D(p, q) \) is viewed as a function of the price of Ivory and Dove, then we expect \(\frac{\partial D}{\partial q} > 0 \).

Problem 8 (8 pts) Suppose employee morale is a function \(M(p, q) \) where \(p \) is the pay rate and \(q \) is the desirability of the work they need to do. Interpret in words the following mathematical statement:

\[\frac{\partial M}{\partial p} = 10 \]

Problem 9 (10 pts) Suppose a certain business produces two products: product A and product B. Let \(x \) represent the price of product A and \(y \) represent the price of product B, at which the business sells the product. Suppose the demand for product A is given by

\[1000 - x \]

and the demand for product B is given by

\[300 - y. \]

The cost of running the business is

\[600,000 - 500x - 100y. \]

Find the prices of the two products that maximize profit for the business.
Problem 10 (10 pts) Find the absolute maximum of $3x - 5y + 35$ subject to the constraint

$$x^2 + y^2 = 34.$$

Problem 11 (5 pts) The function $f(x, y)$ has a critical point at $(2, 7)$. At this critical point, $f_{xx}(2, 7) = 4$ and $f_{yy}(2, 7) = 30$. Give one example of a value for $f_{xy}(2, 7)$ for which $(2, 7)$ a saddle.

Problem 12 (10 pts) The function

$$f(x, y) = x^3 + x^2 + y^2 + x^2 y + xy$$

has a critical point at $(0, 0)$. Use the second derivative test to see what kind it is.