Math 215: Derivatives Review

The following derivatives should be memorized. Here x is the independent variable, and c is any constant.

\[
\frac{d}{dx}c = 0
\]

\[
\frac{d}{dx}x^n = nx^{n-1}
\]

\[
\frac{d}{dx}e^x = e^x
\]

\[
\frac{d}{dx}a^x = (\ln a)(a^x)
\]

\[
\frac{d}{dx}\ln x = \frac{1}{x}
\]

The following rules should be memorized:

Rule 1 (Addition Rule)

\[
\frac{d}{dx}(f + g) = \frac{d}{dx}f + \frac{d}{dx}g
\]

Example 1

\[
\frac{d}{dx}(x^3 + \ln x) = 3x^2 + \frac{1}{x}
\]

Rule 2 (Subtraction Rule)

\[
\frac{d}{dx}(f - g) = \frac{d}{dx}f - \frac{d}{dx}g
\]

Example 2

\[
\frac{d}{dx}(x^3 - \ln x) = 3x^2 - \frac{1}{x}
\]

Rule 3 (Multiplying by a constant)

\[
\frac{d}{dx}(cf) = c\frac{d}{dx}f
\]

Example 3

\[
\frac{d}{dx}(8x^3) = 24x^2
\]
Rule 4 (Product Rule)

\[\frac{d}{dx}(fg) = f \frac{d}{dx}g + g \frac{d}{dx}f \]

Example 4

\[\frac{d}{dx}(x^3e^x) = x^3e^x + e^x(3x^2) \]

Rule 5 (Quotient Rule)

\[\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{g \frac{d}{dx}f - f \frac{d}{dx}g}{g^2} \]

Example 5

\[\frac{d}{dx}\left(\frac{x^3}{e^x}\right) = \frac{e^x(3x^2) - x^3e^x}{(e^x)^2} \]

Note that this is not strictly speaking necessary, since you can view \(f/g \) as \(f \cdot g^{-1} \), and use the product rule and the chain rule together, like this:

\[\frac{d}{dx}\left(\frac{x^3}{e^x}\right) = \frac{d}{dx}x^3(e^{-x})^{-1} = 3x^2(e^{-x})^{-1} + x^3(-1)(e^{-x})^{-2}(e^{-x}) \]

Rule 6 (Chain Rule)

\[\frac{d}{dx}f(g(x)) = f'(g(x))g'(x) \]

Example 6

\[\frac{d}{dx}\ln(x) = \frac{1}{x} \]

- When dealing with \(\sqrt{x} \) or \(\sqrt[n]{x} \), turn them into \(x^{1/2} \) or \(x^{1/n} \) before differentiating.
When differentiating a function that is in the above table, and it has, instead of x, some other function of x, remember to use the chain rule and multiply by the derivative of the argument:

$$\frac{d}{dx}(e^{\sqrt{x}}) = e^{\sqrt{x}} \frac{d}{dx}\sqrt{x}$$

$$= e^{\sqrt{x}} \frac{d}{dx}x^{1/2}$$

$$= e^{\sqrt{x}} \frac{1}{2}x^{-1/2}$$