Math 510 HW #20
Due 11/18

Problem 1 Let X_1, \ldots, X_n be independent, identically distributed (i.i.d.) random variables, each with expected value 3 and standard deviation 7.

Find the expected value and standard deviation of $\overline{X} = \frac{X_1 + \cdots + X_n}{n}$.

Problem 2 In the previous problem, find the value of n so that the standard deviation of \overline{X} is less than .001.

Problem 3 Let X_1, \ldots, X_n be independent, identically distributed (i.i.d.) random variables, each with expected value μ and standard deviation σ. Take the sum $X_1 + \cdots + X_n$ and use it, together with μ and σ, to create a random variable with expected value 0 and standard deviation 1.

Problem 4 Use the law of large numbers (average form) to prove the law of large numbers (probability form).

Problem 5 Suppose you have a die, and p_1, \ldots, p_6 are defined with p_k equal the probability of rolling k. Roll the die n times. Let X_1, \ldots, X_n be the rolls of the die. Using the law of large numbers (probability form), prove the law of large numbers (average form) for X_1, \ldots, X_n.

Problem 6 Let X be a non-negative random variable, with expected value 10. Use Markov’s inequality to determine an inequality related to $P(X > 30)$. Use Markov’s inequality to find an interval for X that is guaranteed to contain 99% of the probability.

Problem 7 Let X be a random variable, with mean 100 and standard deviation 4. Use Chebyshev’s inequality to determine an inequality for $P(92 < X < 108)$. Use Chebyshev’s inequality to find an interval for X that is guaranteed to have 99% of the probability.

Problem 8 Ch. 8 problems p. 457 #1, 2