The Moore-Penrose inverse of a vector: Coping with a sometimes tricky case differentiation

KARSTEN SCHMIDT

Schmalkalden University of Applied Sciences, Germany
e-mail: kschmidt@fh-sm.de

1 Introduction

For any matrix $A \in \mathbb{R}^{m \times n}$ a unique matrix $A^+ \in \mathbb{R}^{n \times m}$ exists, which satisfies the following four conditions

$$AA^+ A = A \quad (1)$$
$$A^+ A A^+ = A^+ \quad (2)$$
$$(A^+ A)' = A^+ A \quad (3)$$
$$(AA^+)' = AA^+ \quad (4)$$

Note that A^+ has the same dimension as A', the transpose of A.

If A is square and nonsingular, its inverse A^{-1} exists. Obviously, in this case the above conditions (1) to (4) are satisfied when A^{-1} is substituted for A^+. Hence, if A is a nonsingular matrix, we have $A^+ = A^{-1}$.
2 Computation of the Moore-Penrose inverse of a vector

The Moore-Penrose inverse of a (column) vector $a \in \mathbb{R}^n$ is given by

$$a^+ = \begin{cases} \frac{1}{a^\prime a} a^\prime & \text{if } a \neq o \\ o^\prime & \text{if } a = o \end{cases}$$ \hspace{1cm} (5)

where o denotes the $(n \times 1)$ zero vector. Apparently, a^+ is a row vector.

Since a vector is nothing else but a matrix with only one column, it should be declared in Derive as such. The following MPIV function has no problem computing the Moore-Penrose inverse of any vector which contains numbers only,

```plaintext
MPIV(a):=
  IF DIM(a^\prime) = 1
    IF (a^\prime a)111 = 0
      0 \cdot a^\prime
    a^\prime/(a^\prime a)111
    "This is not a column vector!"
```

but might not be able to compute the Moore-Penrose inverse of a vector which has non-numeric elements. To illustrate this, we define the following set of vectors in Derive

$$a = \begin{pmatrix} 0 \\ 2 \end{pmatrix}; \quad b = \begin{pmatrix} x \\ 2 \end{pmatrix}; \quad c = \begin{pmatrix} 0 \\ x \end{pmatrix}; \quad o = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

```plaintext
#2: a = \begin{pmatrix} 0 \\ 2 \end{pmatrix}

#3: b = \begin{pmatrix} x \\ 2 \end{pmatrix}

#4: c = \begin{pmatrix} 0 \\ x \end{pmatrix}

#5: o = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
```
Since $a'a = 4 \neq 0$, the Moore-Penrose inverse of a is

$$a^+ = \frac{1}{a'a}a' = \frac{1}{4}(0 \quad 2) = \begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix}$$

As $b'b = x^2 + 4$, $b'b > 0$ for any $x \in \mathbb{R}$, such that

$$b^+ = \frac{1}{bb}b' = \frac{1}{x^2+4}(x \quad 2) = \begin{pmatrix} x \\ \frac{2}{x^2+4} \end{pmatrix}$$

As $c'c = x^2$, we have $c'c = 0$ for $x = 0$, and $c'c > 0$ otherwise. Therefore

$$c^+ = \begin{cases} \frac{1}{c'c}x' = \frac{1}{x}(0 \quad x) = \begin{pmatrix} 0 \\ \frac{1}{x} \end{pmatrix} & \text{if } x \neq 0 \\ o' & \text{if } x = 0 \end{cases}$$

Since $o'o = 0$, the Moore-Penrose inverse of o is

$$o^+ = o'$$

Let us now see how the MPIV function copes with these vectors:

<table>
<thead>
<tr>
<th>Step</th>
<th>MPIV(a)</th>
<th>MPIV(b)</th>
<th>MPIV(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#6</td>
<td>$\begin{pmatrix} 0, & \frac{1}{2} \end{pmatrix}$</td>
<td>$\begin{pmatrix} x, & \frac{2}{x^2+4} \ \frac{2}{x^2+4}, & \frac{2}{x^2+4} \end{pmatrix}$</td>
<td>$\begin{pmatrix} x, \frac{2}{x^2+4} \ \frac{2}{x^2+4}, \frac{2}{x^2+4} \end{pmatrix}$</td>
</tr>
<tr>
<td>#7</td>
<td></td>
<td></td>
<td>$\text{IF}(x = 0, 0, \begin{pmatrix} 0 \ x \end{pmatrix}, \begin{pmatrix} 0 \ x \end{pmatrix}, \begin{pmatrix} 0 \ x \end{pmatrix}, \begin{pmatrix} 0 \ x \end{pmatrix})^{-1}$</td>
</tr>
<tr>
<td>#8</td>
<td></td>
<td></td>
<td>$\begin{pmatrix} 1, & 1 \end{pmatrix}$</td>
</tr>
<tr>
<td>#9</td>
<td></td>
<td></td>
<td>$[0, \ 0]$</td>
</tr>
</tbody>
</table>

The MPIV function finds a^+, b^+ and o^+, but fails to compute the Moore-Penrose inverse of c.
3 Computation of the Moore-Penrose inverse of a matrix

For the computation of the Moore-Penrose inverse of a matrix we apply Greville’s method, which is an iterative algorithm that needs n steps for the computation of the Moore-Penrose inverse of an m by n matrix. The MPI function given below calls the MPIV function in each step. Hence, the MPI function might be unable to compute the Moore-Penrose inverse of a matrix if it has at least one non-numeric element.

To illustrate this, we define the following four matrices in Derive

\[
A = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}; \quad B = \begin{pmatrix} x & 0 \\ 2 & 0 \end{pmatrix}; \quad C = \begin{pmatrix} 1 & 0 \\ 2 & x \end{pmatrix}; \quad D = \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}
\]
The MPI function finds A^+ and B^+, but fails to compute the Moore-Penrose inverse of C and D.

Note that

$$ C^+ = \begin{cases}
\begin{pmatrix} 1 & 0 \\ -\frac{2}{x} & \frac{1}{x} \end{pmatrix} & \text{if } x \neq 0 \\
\begin{pmatrix} \frac{1}{5} & \frac{2}{5} \\ 0 & 0 \end{pmatrix} & \text{if } x = 0
\end{cases} \quad \text{and} \quad D^+ = \begin{cases}
\begin{pmatrix} \frac{1}{x} & 0 \\ 0 & 0 \end{pmatrix} & \text{if } x \neq 0 \\
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \text{if } x = 0
\end{cases} $$
4 A way out

Let us consider the rank of the four vectors from section 2:

\[r(a) = 1, \quad r(b) = 1 \quad \text{for any } x \in \mathbb{R}, \quad r(c) = \begin{cases} 1 & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}, \quad r(o) = 0 \]

Obviously, the rank of \(c \) depends on \(x \). But in Derive

\[
\begin{align*}
#10: & \quad \text{RANK}(a) = 1 \\
#11: & \quad \text{RANK}(b) = 1 \\
#12: & \quad \text{RANK}(c) = 1 \\
#13: & \quad \text{RANK}(o) = 0
\end{align*}
\]

we get \(r(c) = 1 \), i.e. \(\text{Derive} \) does not make a case differentiation. Apparently, the single \(x \) value, which turns \(c \) into a zero vector, is neglected.

Let us now see how the MPIV0 function copes with the four vectors:

\[
\begin{align*}
\text{MPIV0(a)} & \quad = \begin{bmatrix} 0, & \frac{1}{2} \end{bmatrix} \\
\text{MPIV0(b)} & \quad = \begin{bmatrix} \frac{x}{2x + 4}, & \frac{2}{2x + 4} \end{bmatrix} \\
\text{MPIV0(c)} & \quad = \begin{bmatrix} 0, & \frac{1}{x} \end{bmatrix} \\
\text{MPIV0(o)} & \quad = \begin{bmatrix} [?, & ?] \end{bmatrix}
\end{align*}
\]

The MPIV0 function computes the Moore-Penrose inverse of \(c \) for \(x \neq 0 \). The special case \(x = 0 \) is ignored. However, it is unable to compute the Moore-Penrose inverse of \(o \).
Let us now consider the rank of the four matrices from section 3:

\[r(A) = 1, \quad r(B) = 1 \text{ for any } x \in \mathbb{R}, \quad r(C) = \begin{cases} 2 & \text{if } x \neq 0 \\
1 & \text{if } x = 0 \end{cases}, \quad r(D) = \begin{cases} 1 & \text{if } x \neq 0 \\
0 & \text{if } x = 0 \end{cases} \]

Obviously, the value of \(x \) is crucial as to whether the second column of \(C \), and the first column of \(D \), are zero vectors or not. But in Derive

#11:	RANK(A) = 1
#12:	RANK(B) = 1
#13:	RANK(C) = 2
#14:	RANK(D) = 1

we get \(r(C) = 2 \), i.e. Derive again does not make a case differentiation. Apparently, the single \(x \) value, which turns the second column of \(C \), and the first column of \(D \), into zero vectors, is neglected.
The **MPI0** function is identical to the **MPI** function in section 3, except that it calls the **MPIV0** function instead of the **MPIV** function in lines 3 and 11. Let us now see how the **MPI0** function copes with the four matrices:

| #15: | **MPI0(A)** = \[
| | \begin{bmatrix}
| | \text{?} & \text{?} \\
| | \text{?} & \text{?} \\
| | \end{bmatrix}
| #16: | **MPI0(B)** = \[
| | \begin{bmatrix}
| | 1 & 0 \\
| | \text{?} & \text{?} \\
| | \end{bmatrix}
| #17: | **MPI0(C)** = \[
| | \begin{bmatrix}
| | \frac{1}{x} & \frac{1}{x} \\
| | - \frac{2}{x} & 1 \\
| | \end{bmatrix}
| #18: | **MPI0(D)** = \[
| | \begin{bmatrix}
| | \text{?} & \text{?} \\
| | \text{?} & \text{?} \\
| | \end{bmatrix}
| |

The **MPI0** function computes the Moore-Penrose inverse of **C** for \(x \neq 0 \). The special case \(x = 0 \) is ignored. However, it is unable to compute the Moore-Penrose inverses of **A**, **B**, and **D**.

Note that **C** is a nonsingular matrix for \(x \neq 0 \) such that \(C^+ = C^{-1} \). Computing the inverse of **C** in *Derive* generates the same matrix as the **MPI0** function, i.e. *Derive* is consistent in terms of disregarding the special case \(x = 0 \).

| #19: | \(C^{-1} = \[
| | \begin{bmatrix}
| | 1 & 0 \\
| | - \frac{2}{x} & \frac{1}{x} \\
| | \end{bmatrix}\)